Name:	ANS	WEI	3 KE	1	Period:	Date:	
-------	-----	-----	------	---	---------	-------	--

Introduction to the Mole - ONLINE EDITION!

Today you will use 3 different websites to learn about a central concept in chemistry: THE MOLE! This is a lesson in chemistry and a lesson in <u>independence</u>: all of the information you need to answer the questions is in the websites. Check them out!

Website 1: http://antoine.frostburg.edu/chem/senese/101/moles/faq/why-use-moles.shtml (~12 minutes)

1 mole of ANYTHING = 6.02 x 10²³ of that thing

1 mole of eggs = 6.02×10^{23} eggs 1 mole of diamonds = 6.02×10^{23} diamonds 1 mole of hydrogen = 6.02×10^{23} atoms of hydrogen 1 mole of water = 6.02×10^{23} molecules of water

- 1. How many sneakers are in one mole of sneakers? 6.02 × 10²³ sneakers

 2. How many atoms of carbon are in one mole of carbon? 6.02 × 10²³ atoms of carbon
- 3. You have a mole of substance 1 and a mole of substance 2. Do substance 1 and substance 2 have to have the same mass (number of grams)?

 Yes

Explain your answer using an example:

Adozen elephants and a dozen eggs are both 12 but elephants have a MUCH larger mass

4. Why do we use moles in chemistry?

Counting molecules individually is impractical

La Too MANY

moles solve the problem of counting large

moles solve the problem of counting large numbers of molecules

5. Once we know how many moles we have, we can use moles to count <u>molecules</u>

	6. Complete the following examples:
	- 16.02×10 moders
	0.001 moles of water x $ \frac{(6.02 \times 10^{23} \text{ water})}{1 \text{ mole water}} = 6.02 \times 10^{20} \text{ molecules of water} $
unite	
units	1 mole water
out	6.02x 023 water
	7. Can you use something's mass (number of grams) to figure out how many moles of it you
	have? (Yes) No
	8. Complete the following examples:
	1 Imole water 1
	100 grams of water x [189 water] = 5.56 moles of water
	$\frac{32 \text{ g } O_2}{1 \text{ mole } O_2} = 192 \text{ grams of } O_2$
	1 made 02
	Why do we have 32 grams of O2 if the molecular weight (another word for molar mass)
	of oxygen is grams?
	because we have 02, not 0
	Website 2
	Website 2: http://chemistry.about.com/od/workedchemistryproblems/a/molegramconvert.htm (~20 minutes)
	PROBLEM 1: How many moles of CO ₂ are in 454 grams of CO ₂ ? Atomic mass of carbon: 12.01 grams
	****ATOMIC MASS = BOTTOM NUMBER ON PERIODIC TABLE!!! REMEMBER?***
	Atomic mass of oxygen: grams
	Formula mass (molar mass) - 6 co
	12.01 g Carbon + 2(16 g Oxygen) = 44.01 g CO2
	$\frac{12.01}{g \text{ Carbon} + 2(\underline{16} \text{ g Oxygen}) = \underline{44.01}_{g \text{ CO}_2}}$ Mass of one mole of $CO_2 = \underline{44.01}_{g \text{ grams } CO_2}$
	151 mol CO2 1
	$454 \frac{\text{grams CO}_2 \times \left(\frac{1 \text{ mol CO}_2}{444.01 \frac{\text{geO}_2}{2}}\right) = 10.3 \text{moles of CO}_2$

CLICK TO PAGE 2

PROBLEM 2: How many grams of H ₂ SO ₄ are in 3.6 moles of H ₂ SO ₄ ?
Atomic mass of hydrogen: 1.008 grams
Atomic mass of sulfur: 32.06 grams
Atomic mass of oxygen: 6 grams
Formula mass (molar mass) of H ₂ SO ₄ :
$2(1.008 \text{ gH}) + 32.06 \text{ gS} + 4(16 \text{ gO}) = 98.08 \text{ grams H}_2SO_2$ Mass of one mole of H-SO ₂ = 98.08 grams H-SO ₂
Mass of one mole of $H_2SO_4 = 98.08$ grams H_2SO_4
$3.6 \text{ moles H}_2SO_4 \times \left(\frac{98.089 \text{ H}_2SO_4}{1 \text{ mol H}_2SO_4}\right) = \frac{353}{353} \text{ grams of H}_2SO_4$
TRY ON YOUR OWN:
3. How many moles of CH ₄ are in 64 grams of CH ₄ ?
Atomic mass of carbon: 12.01 grams
Atomic mass of hydrogen: 1.01 grams
Formula mass (molar mass) of CH_4 : 12.01 g Carbon + 4(1.01 g Hydrogen) = 16.05 grams CH_4
Mass of one mole of $CH_4 = 16.05$ grams CH_4
64 grams ett x (Imol 16.05g CH4) = 3.99 moles grams of CH4
4. How many grams are in 4.2 moles of FeO ₂ ?
Atomic mass of iron: 55.85 grams
Atomic mass of oxygen: 6 grams
Formula mass (molar mass) of FeO ₂ :
55.85 g Iron + 2(16 g Oxygen) = 87.9 grams FeO ₂
Mass of one mole of $FeO_2 = 87.9$ grams FeO_2
4.2 moles FeO ₂ x (87.99 FeO ₂) = 368.97 grams of FeO ₂

Website 3 (~30 minutes):

http://www.softschools.com/quizzes/chemistry/counting_particles_and_avogadros_number/quiz1119.html

<u>Directions</u>: Take the "Counting Particles & Avogadro's Number" Quiz. Answer all 10 questions and SHOW YOUR WORK below! Re-do any problems you got wrong, and still show your work.

Include units in every answer.

- 1. How many atoms are in 2.5 moles of zinc? 1.51 × 10²⁴ atoms
- 2. How many formula units (molecules) are in 3.25 moles of silver nitrate? 1.96 × 10 24

 FORMULA UNIT = molecule/particle (for ionic compounds)

 FORMULA UNIT = molecule/particle (for ionic compounds)
- 3. How many atoms are in 4 moles of hydrogen gas? 2.41 × 10²⁴ atoms
- 4. How many molecules are in 1.5 moles of water? 9.0 × 10²³ molecules
- 5. How many formula units are in 3.3 moles of NaCl? 1.99 formula Units
- 6. If you have 5.75 x 10²⁴ aluminum atoms, how many moles is that? 10 moles
- 7. If you have 3.58 x 10²⁴ molecules of carbon dioxide gas, how many moles do you have? 6 moles
- 8. If there are 3.58 x 10²³ formula units of zinc chloride, how many moles are there? 0.5 (real answer is 0.59)
- 9. How many moles are in 2.5×10^{20} iron atoms? $\frac{0.000415 \text{ moles}}{(4.15 \times 10^{-4} \text{ moles})}$
- 10. How many moles are in 4.50 x 10²⁴ oxygen atoms? 7.5 moles